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The motion of idealized inextensible strings is discussed. The equations of motion are
analyzed for closed-loop con"gurations, free of body forces and open hanging strings
whirling under gravity. The latter give rise to an interesting non-linear eigenvalue problem
describing a spectrum of whirling modes that is amenable to numerical investigation by
using the shooting method for two-point boundary value problems. The spectrum is
compared with that for small amplitude excitations in both "xed and rotating vertical plane
through the suspension point. The results provide a useful theoretical background for an
analysis of a laboratory exploration of whirling chains.
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1. INTRODUCTION

A common introduction to wave motion and the normal mode analysis of
a one-dimensional continuum is via the study of small oscillations of an idealized elastic
string. With appropriate assumptions a linear wave equation is readily derived and its
analysis is a natural precursor to the study of wave propagation in a multitude of other
systems of relevance in Nature. However, such an idealization may not o!er any guidance
for tackling situations where disturbances are not necessarily small compared with the
dimensions of the system. In large-amplitude oscillations of a real string the longitudinal
and transverse motions become coupled and a realistic treatment relies on a careful
consideration of the appropriate constitutive relations linking the con"guration of the
system to the elastic forces exerted by the medium [1}3]. Such considerations become
mandatory if one is to distinguish the behaviour of a rubber band from that of a violin
string. The constitutive relations for such realistic systems generally give rise to a non-linear
wave equation [4]. There is also a class of problems where the elastic forces are provided by
the constraint of inextensibility [5}7]. Such problems clearly lie outside the scope of
treatments rooted in the use of Hooke's law. It is the purpose of this note to explore at
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a pedagogical level the rich dynamical structure inherent in the motion of inextensible
homogeneous strings or chains hanging from a "xed point under gravity or whirling as
loops freely in space.

If one rolls the end of a small length of cotton thread between "nger and thumb it can be
made to execute an interesting whirling motion. A similar phenomenon is readily visible by
twiddling a key chain in a similar manner. The nature of the whirling con"guration depends
on its mode of excitation, particularly its angular speed. Similar con"gurations are possible
with longer hanging ropes, cords, or chains. These are the examples of the dynamical
systems that are discussed here, idealized as one-dimensional inextensible material media.
Motion with one point "xed, under Earth's uniform gravitational "eld is considered "rst. It
is assumed that the medium can sustain a contact tension directed along its length during
every moment of its motion and will be referred to as a string or chain for short. Periodic
boundary conditions are then described for a class of interesting axial motions executed by
closed loops in the absence of body forces.

Since physical media are never truly one-dimensional or strictly inextensible the system
under discussion is an idealization. However, it is a di!erent idealization from the
discussion of a Hookean elastic string executing small vibrations and one cannot a priori
assert that the tension along its length remains constant in time irrespective of its dynamical
con"guration. The magnitude of the tension arises dynamically from the inextensibility
assumption and must be determined from the equations of motion along with the
con"guration of the system as a function of time. It is this particular feature that is
emphasized in the following treatment.

In section 2 the general equations of motion for such a system are established. In section 3
the analytic form of the general solution for a hanging string executing small vibrations in
a ,xed plane are written down before discussing the normal modes appropriate for the
description of whirling modes of large amplitude in a rotating plane in section 4. The
behaviour of whirling modes is of direct relevance to a number of important industrial
processes ranging from the dynamics of drill-strings in the oil exploration industry [8] to
the control of balloon formation in the spinning of yarn [9, 10]. As will be seen, the analysis
of general whirling solutions can give rise to an interesting non-linear eigenvalue problem in
contrast to the linear eigenvalue problem for motions with small amplitude. A number of
techniques designed to elucidate the large-amplitude motion of the system are suggested.
For closed loops the imposition of periodicity leads to novel spinning con,gurations and
analytic expressions are obtained for #owing circular motions in the absence of net external
body forces. In the "nal section, numerical results are discussed, suggestions o!ered for the
excitation and detection of whirling eigenmodes in the laboratory and the theoretical
analysis compared with observations on realistic chains.

2. EQUATION OF MOTION FOR AN INEXTENSIBLE MATERIAL STRING

Suppose the elements of an inextensible string are labelled by a variable s that runs
from s"0 to ¸ where ¸ is its length. Let o(s) denote its mass per unit length.
With reference to an arbitrary origin in space denote the position of such elements
at time t by the vector r(s, t). Thus, at time t"t

0
the space curve s> r (s, t

0
) is

the instantaneous con"guration of the string in an inertial frame. Since the length

of the string is :L
0

JL
s
r ) L

s
rds the condition

L
s
r ) L

s
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Figure 1. For a string or chain the elastic contact forces are directed along a tangent to the (dotted) line of
centroids. The "gure shows the location of an element of material in a global Cartesian frame of reference. Its
motion is determined by the di!erence in the vector tension between its extremities.
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implies that s measures arc-length along the string. The condition that the string is
inextensible means that relation (1) must be maintained at all time. Clearly, L

s
r,r

s
is a unit

vector (see Figure 1) and one may write the vector tension in the string as

T(s, t)"¹(s, t)r
s

(2)

in terms of its magnitude ¹(s, t). As stressed above for idealized inextensible strings this
tension is a dynamical variable that must be determined along with r(s, t) from the
equations of motion, initial and boundary conditions. The net tension force that accelerates
an element dr of the string is, to "rst order in ds

MT(s, t)#L
s
T(s, t) dsN!T (s, t), (3)

while gravity contributes a body force o (s) dsg, where g is the vector acceleration due to
gravity. Since o(s) ds r5 (s, t) is the momentum of the element, Newton's law gives

oL
tt
r"og#L

s
(¹r

s
). (4)

Equations (1) and (4) together with initial and boundary conditions are to be solved for
r(s, t) and ¹ (s, t). Solutions corresponding to one end of the string constrained to be "xed in
space while the other end is free are explored "rst. Thus, the tension must be zero at the free
end.

Equations (1) and (4) constitute four coupled non-linear partial di!erential equations in
two independent variables. In the following, material with a uniform density o(s)"o

0
is

considered. It is convenient to introduce dimensionless quantities by using the
transformations q"t/t

0
, p"s/¸, R(p, q)"r(s, t)/¸, h"gt2

0
/¸, T(p, q)"¹(s, t) t2

0
/(¸2o

0
),

where t
0

is an arbitrary scale with the dimensions of time. In the following t2
0
"¸/g where

g"DgD.
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Then the dimensionless equations of motion are

Rp )Rp"1, LqqR"h#Lp (TLpR), (5, 6)

and note that 0)p)1. Choose Cartesian co-ordinates so that the x- and y-axis are
horizontal while the z-axis is directed downwards from the origin so that h"(0, 0, 1). With
R(p, q)"(x(p, q), y (p, q), z (p, q)), equations (5) and (6) give

(Lpx)2#(Lpy)2#(Lpz)2"1, (7)

Lqqx"Lp(TLpx), Lqqy"Lp (TLpy), Lqqz"1#Lp(TLpz). (8}10)

For a string hung from the ("xed) origin (p"1) with the free end at p"0, the boundary
conditions are R(1, q)"0, T(0, q)"0.

3. MOTION IN A FIXED PLANE

Equations (7)}(10) constitute a non-linear system of partial di!erential equations for the
general history of the space curve R(p, q). One strategy to solve these equations is to seek
con"gurations that reduce this system to ordinary di!erential equations. Guided by
physical intuition one expects that the hanging string will admit vibrations in both a "xed
and rotating vertical plane in space. Both cases lend themselves readily to approximate
treatments if the amplitude of oscillation is maintained small compared with the physical
length of the string. It is instructive to analyze these approximations "rst since it will be
noted in section 4 how they relate to the larger whirling motions in which the plane of
vibration rotates uniformly about a vertical axis through the point of suspension.

Clearly, equations (7)} (10) admit solutions with, say y(p, q)"0 corresponding to motion
in the "xed z}x plane. Furthermore, if the motion is such that DLpx (p, q) D@1 for all q so that
equation (7) is satis"ed to a good approximation by

z (p, q)"1!p, (11)

where the constant ensures that z(1, q)"0, then equation (10) implies LpT (p, q)"1. Since
T(0, q)"0 one must have

T(p, q)"p. (12)

Inserting this in equation (8) yields

Lqqx"Lp(p Lpx), (13)

whose general solution (regular at p"0) is a superposition of eigenmodes of the form

x (p, q)"
=
+
k/1

A
k
J
0
(k

k
Jp ) sin (1

2
k
k
q#/

k
) (14)

in terms of the Bessel function J
0
. The amplitudes A

k
and phases /

k
may be determined from

the initial conditions x (p, 0) and Lqx (p, 0) while the characteristic eigenfrequencies of small
oscillations are determined by the boundary condition x (1, q)"0 and correspond to the
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in"nite number of roots of the equation

J
0
(k)"0. (15)

The approximate solution indicates that the kth eigenmode vanishes at points determined

by p"pk
r
where J

0
(k

k
Jpk

r
)"0. Since the roots k

k
are distinct and start from k

1
this implies

the existence of k nodes determined by

pk
r
"(k

r
/k

k
)2, r"1,2 , k. (16)

4. WHIRLING CONFIGURATIONS

In the previous section, one continuous degree of freedom was frozen by restricting
motion to a ,xed plane in space. In this section, a class of solutions obtained by restricting
the motion to a uniformly rotating plane in space is examined. An element of the hanging
string, labelled by p"p

0
, that moves in a horizontal circle of radius s

0
with angular

frequency u/t
0

rad/s at a height given by z"z
0

describes the space curve (x"s
0
cos (uq),

y"s
0
sin (uq), z"z

0
). This suggest that one search for whirling solutions of the form

R(p, q)"(s (p) cos (uq), s(p) sin (uq), f(p)), T(p, q)"T
0
(p), (17, 18)

with T
0
(0)"0. The components of R are speci"ed with respect to a Cartesian inertial

frame. This corresponds to a time independent con"guration when viewed with respect to

a vertical plane rotating with a "xed angular speed X"uJg/¸ rad/s about a vertical axis
that passes through the suspension point. Inserting equations (17) and (18) into equations
(7)}(10) shows that the functions s, f and T

0
must satisfy

Lp(T0
Lps)"!u2s, Lp (T0

Lpf)"!1, (Lps)2#(Lpf)2"1, (19}21)

with s(1)"f (1)"0, and the equations of motion are reduced to a system of coupled
ordinary di!erential equations. Clearly equations (19) and (20) express a balance of tensile
forces with centrifugal and gravitational forces, respectively, in a non-inertial co-ordinate
system while equation (21) maintains the inextensibility constraint.

Following the tactics in section 3 consider "rst small de#ection of the string from the
vertical with (Lps)2@1 so that equation (21) is satis"ed with f (p)"1!p. The tension now
follows by integrating equation (20) with T

0
(0)"0:

T
0
(p)"p. (22)

Inserting this into equation (19) gives

Lp(pLps)#u2s"0 (23)

for eigenfunctions s satisfying s(0)"0. Such eigenfunctions are given in terms of the 0th
order Bessel function,

s
k
(p)"J

0
(2u

k
Jp), (24)
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where the eigenspeeds Mu
k
N are determined from the boundary condition to be the roots of

the equation

J
0
(2u

k
)"0. (25)

According to this linearized approximation each eigenfunction is associated with
a particular whirling eigenspeed u

k
. It will be noticed that this set of whirling eigenspeeds

coincides with the angular frequences of small planar oscillations Mk
k
/2N discussed in the

previous section. The small amplitude whirling modes appear as a superposition of such
planar oscillations in a rotating plane. This solution also implies that only a discrete set of
stationary whirling speeds above a non-zero minimum (u

1
) is permitted, contrary to the

experience.
By contrast to the linearized analysis one may now proceed to analyze equations

(19)}(21) making no assumptions about the size of the possible displacements. One may
immediately integrate equation (20) to get

T
0
Lpf"!p, (26)

since T
0
(0)"0. Introduce

u(p)"T
0
(p)Lps (p) (27)

into equations (21) and (26) so that

T
0
"Ju2#p2 . (28)

Using this to integrate equation (26) gives

f(p)"!P
p

1

sds

Ju2(s)#s2
, (29)

satisfying f(1)"0. Similarly, equation (27) yields

s (p)"P
p

1

u (s) ds

Ju2(s)#s2
, (30)

satisfying s(1)"0. Inserting equation (27) into equation (19) yields

Lp (u)"!u2s (31)

and di!erentiating this gives "nally

d2u

dp2
#j

u

Ju2#p2
"0, (32)

where j"u2. In terms of u the free end boundary condition T
0
(0)"0 is

u(0)"0. (33)

At the origin, s(1)"0 so equation (31) implies

Lpu(1)"0. (34)



Figure 2. Eigenvalues j"u2 as a function of the con"gurational shooting parameter a associated with the
motion of an inextensible string whirling with angular speed u under gravity. Each line designates a possible mode
associated with the pair (a, j) on it. The dotted horizontal lines denote the analogous predictions of the linearized
theory for small whirling amplitudes..
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Equation (32) together with equations (33) and (34) constitute a non-linear eigenvalue
problem for u(p) [11]. Each eigenvalue j and associated eigenfunction u(p) determines via
equations (29) and (30) the con"guration s(p), f(p) together with the corresponding reduced
tension (28). Equations (32)} (34) do not have an immediate analytic solution. They are,
however, amenable to numerical analysis. One notes that the boundary conditions consist
of values of u speci"ed at di!erent points. Traditional numerical methods for solving second
order ordinary di!erential equations require a speci"cation of the function and its "rst
derivative at the initial point of the integration range. Such methods may still be used to
explore the non-linear eigenvalue problem here by exploiting the so-called shooting method
[12, 13]. In this problem choose as initial data (u(0)"0, Lpu(0)"a) for some arbitrary
number a. For a particular choice of (positive) j, equation (32) is then integrated from p"0
to p"1 where Lpu(1) is compared with zero. If DLpu(1) D is not within some small assigned
distance from zero the initial value of a is adjusted and the integration is repeated. When
this approach is used to integrate equation (32) an interesting result emerges. For any given
choice of j in general several values of a arise for which the boundary conditions are
satis"ed. Thus, each a generates a distinct con"guration of the whirling string associated
with a particular whirling frequency. There is a Maple programme written by Douglas
Meade available in the Maple V share library designed to solve two-point boundary value
problems of the type under discussion [14]. With the aid of this programme the
eigenstructure of equation (32) has been explored up to j"250 and the results are
displayed in Figure 2. The programme can be placed in a simple loop which increments the
value of a through a range for a particular value of j. Thus, for j"100 the programme



Figure 3. A selection of whirling con"gurations corresponding to j"150 as predicted by the shooting method
of solution to the non-linear eigenvalue problem described in the text.
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returns six values for u(s) each with a di!erent starting value of a and increasing the loop
increment or the range of a produces no more solutions. It is clear that the degeneracy of
solutions (i.e., the number of distinct whirling con"gurations with the same whirling
frequency) increases with whirling speed. Di!erent whirling con"gurations with the same
whirling speed are distinguished by having di!erent numbers of nodes (de"ned as those
points where the string intersects the vertical). In Figure 2 the horizontal lines locate the
eigenvalues in the linearized description. Unlike in the linearized theory there is now
a particular (family) of possible eigenmodes associated with any non-zero whirling speed u.
For each solution one can plot the con"guration of the chain in the co-rotating plane. The
corresponding tension as given by equation (28) can be similarly displayed. Figure 3
displays a family of degenerate whirling con"gurations corresponding to j"150. Figure 4
displays a particular whirling mode (dotted) corresponding to j"100 together with the
associated variation of the scaled tension. It is of interest to note that the minima and
maxima of the tension occur at the nodes and the extrema of the spatial con"guration
respectively.

Further insight may be obtained by recasting the equations of motion into "rst order
form. The derivatives of equations (29) and (30) together with equation (31) give

d

ds
F(s)"H(s, j), (35)

where

F"(u (s), f (s), s(s)), (36)

H"(!js(s), !s/Ju(s)2#s2 , u(s)/Ju(s)2#s2) . (37)



Figure 4. A whirling con"guration () ) ) ) )) corresponding to j"100 together with the variation of the (**)
scaled reduced tension q in the chain along its length as predicted by the shooting method of solution to the
non-linear eigenvalue problem described in the text. q has been scaled by 0)9 in order to display it on the same
picture. Note that the minima of the tension occur at the extrema of the whirling con"guration and the maxima of
the tension occur at the nodes.
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For a given j equation (35) can be integrated with initial conditions F(0, f
0
, s

0
) and f

0
,

s
0
adjusted until equation (34) is satis"ed. In this approach it is clear how di!erent positions

of the free end of the whirling string can be adjusted to satisfy the boundary conditions for
any given whirling speed.

As an alternative to the numerical integration of the di!erential equations above one may
contemplate a variational approach. Multiplying equation (32) by u(s) and integrating over
the p domain yields

P
1

0

uLppu dp#j P
1

0

u2dp

Jp2#u2
"0. (38)

Integrating the "rst term by parts and using the boundary conditions (33) and (34) gives

j"K[u],

where

K[u]"P
1

0

(Lpu)2dpNP
1

0

u2dp

Jp2#u2
. (39)

This suggests that j can be generated from a local extremum of the numerator of equation
(39) subjected to some constraint. Indeed one may readily "nd a LagrangianL for equation
(32):

L(Lpu, u, s)"1
2

(Lpu)2!jJu2#p2 . (40)

From equations (31) and (27) it follows that the energy :1
0
R0 2dp is being minimized subject to

keeping the integrated tension :1
0

Ju2#p2 dp constant. If one chooses an N parameter
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trial function uN (a
1
,2 , a

N
, p ) satisfying equations (33) and (34) then j may be estimated

from equation (39) by solving

L
aj

K[uN]"0 (41)

for the parameters a
j
, j"1,2 , N.

It is clear from equations (7)} (10) that a more symmetric system of equations arises in the
case g"0. This could be achieved by taking the string into a gravity free domain or by
subjecting it to additional body forces that cancel g, such as those produced by an external
electromagnetic "eld. On physical grounds one would then expect the existence of
con"gurations in which planar circular loops of chain rotate about an axis through the
centre of each circle perpendicular to its plane. For such problems the two-point boundary
condition above is replaced by the periodicity condition R(p, q)"R(p#1, q). Upon
choosing the plane containing the circle to be z"0 it is easy to verify that, despite the
non-linear nature of the di!erential equations, an exact solution describing such
a con"guration exists. It is given by

x (p, q)"R
0
cos (2n (p#vq)), (42)

y(p, q)"R
0
sin (2n (p#vq)), (43)

z (p, q)"0, ¹ (p, q)"v2, (44, 45)

where R
0
"1/2n and the constant v describes the (reduced) circumferential speed of a point

of the chain. What is less intuitive is that solutions of a similar nature exist in which the
chain &&#ows'' in closed loops of arbitrary shape. A discussion of these interesting
con"gurations and their stability under deformation can be found in reference [15].

5. DISCUSSION

From Newton's equations of motion for an inextensible hanging chain the equations
describing small amplitudes oscillations in both a "xed and a rotating plane have been
deduced. These may be contrasted with free rotating loops and whirling con"gurations
under gravity of large amplitude. The whirling modes arise as solutions to a non-linear
di!erential equation that is solved subject to a two-point boundary condition. Such
a non-linear eigenvalue problem is amenable to numerical analysis by either the shooting
method or variational techniques. The former has been used to elucidate the spectrum in this
article. It is believed that the solutions o!er valuable insight into a number of important
concepts including the role of the inextensibility constraint, linearization, the superposition
of solutions and the concept of degeneracy. They also o!er an introduction to more
advanced concepts relating the behaviour of linearized solutions to general solutions
described by a parameter (j). Indeed, parts of Figure 2 relate to bifurcations in the theory of
whirling strings [4]. For any whirling speed X rad/s, with j corresponding to X2¸g, the
whirling eigenmodes lie on the full lines in Figure 2. The dotted horizontal lines denote the
analogous predictions of the linearized theory for small whirling amplitudes and it will be
noted how the predictions of the linearized theory depart from the full theory as the
whirling amplitudes (as measured by a) increase.

The theoretical analysis above o!ers a valuable background for an experimental
investigation into the behaviour of realistic hanging chains excited by rotary motion.
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According to Figure 2, if j
n
denotes one of the in"nite set of ordered eigenvalues associated

with the whirling modes of small amplitude then for any j,u2 between j
n
and j

n`1
there

is a set of n whirling con"gurations MR(j)
1

, R(j)
2

,2, R(j)
n

N. For an inextensible chain the total
energy of each whirling con"guration is the sum of its kinetic and gravitational potential
energies and is readily shown to vary linearly with j. If one counts the suspension point as
a node then the con"guration given by R(j)

k
has k nodes. In an attempt to confront the

predictions of this idealized model with the behaviour of real whirling chains a small
experimental rig has been constructed that can suspend chains with lengths of order 1}2 m
and excite them into rotary motion with the aid of a variable speed DC electric motor.

However, notwithstanding the caveats mentioned in section 2 it is by no means trivial to
excite a pure whirling eigenmode in a hanging chain and some ingenuity is required in order
to compare the theory discussed above with observations on real chains. Following some of
the suggestions in reference [7] a combination of stroboscopic techniques and #ash
photography can be used to explore the con"guration of a chain driven by a variable speed
DC motor at its upper end. By carefully varying the rotation speed of the motor driving
suitably #exible chains it is possible to verify the existence of whirling con"gurations closely
approximating those predicted by the shooting programme and by counting the nodes as
a function of the motor speed the general features of the eigenvalue spectrum can be
explored.

One of the main problems in observing whirling eigenmodes in a chain few metres long is
the inevitable dynamical coupling between di!erent whirling modes induced by extraneous
vibration from the drive source and frictional e!ects (including viscoelasticity in the chain).
Much of the extraneous vibration produced by the electric motor excites non-stationary
interference e!ects that are readily observed under strong illumination. Such e!ects can be
reduced by damping the axial and lateral vibrations where the chain is attached to the
rotary drive. This may be achieved by connecting the drive shaft of the motor to the chain
by means of a sti! plastic coupler. In order to excite di!erent whirling modes it was found
expedient to touch the whirling chain (with a rigid rod) at some point along its length. By
judiciously choosing the point of contact a particular eigenmode can be encouraged to
form. Such modes typically exist for several seconds before becoming contaminated with
other dynamical structure. The photographic plate (Figure 5) clearly shows the pro"le of
a typical whirling con"guration captured by #ash photography. In this manner, one may
correlate the number of characteristic nodes in the pure whirling con"guration with the
ambient whirling speed. According to the solutions displayed in Figure 2, a "nite number of
such con"gurations are possible for any whirling speed. In practice, it is often found that
a particular set of con"gurations are dominant with some apparently absent entirely.
Despite this shortcoming, no whirling eigenmode was ever observed with more nodes than
those predicted by the idealized model analyzed in this paper. A typical set of data is
displayed in Figure 6 where the number of observed noded is displayed against the whirling
speed in Hz (1 Hz"60 RPM"2n rad/s) for a chain of length 0)764 m. With g"9)81 m/s/s
the relation between j and the whirling speed X in rad/s for such a chain is,

j"0)08X2.

Comparing with Figure 2 one sees that at, say X"8n, jK51 and (excluding the point of
suspension) two of the three predicted low-frequency whirling modes were observed. In the
range amenable to observation most of the predicted whirling modes with more than three
nodes were observed, and no others.

The use of the scaled variables introduced in section 2 also makes it possible to
investigate the (in)dependence of the motion on the mass density and length of the chain.



Figure 5. Experimentally observed whirling eigenmodes.

Figure 6. Experimentally observed whirling con"gurations for a chain of length 0)765 metres as a function of
whirling speed (1 Hz)"60 rpm). Each con"guration is labelled by its number of nodes, excluding the point of
suspension.
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Since the theory above ignores internal dissipation of energy the use of di!erent types of
chain can be used to explore the realm of applicability for the idealized theory. Such
observations lend credence to the theoretical analysis of the idealized inextensible whirling
string and are in full accord with the existence proof given in reference [11]. They also o!er
an enhanced appreciation of a number of related concepts in the dynamics of inextensible
strings.

6. CONCLUSION

An account has been given of certain motions of closed and open inextensible strings,
modelled in terms of simple one dimensional continua under variable tension. In particular,
a discussion has been given of the large amplitude whirling eigenmodes of a string
suspended under gravity and the &&#owing'' modes of a closed string in the absence of
gravity. The vibrational behaviour of the former has been contrasted with the linearized
description. The non-linear eigenproblem for whirling modes has been solved numerically
by using a &&shooting'' method for a range of whirling speeds and an attempt made to
confront the numerical predictions with observation by using a small experimental rig. The
results lend credence to the theoretical results despite the neglect of damping both along the
structure and at its point of suspension.
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